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A method is given for solving for the s teady-s ta te  rad ia t ive-conduct ive  heat t r ans fe r  in a planar 
layer  of a medium; the radiation flux is represented by means of Green 's  functions. 

A large amount of computer time is required in direct numerical solution of the equations for radiative- 
conductive transport in a nonscattering medium, so several methods have been proposed for transforming the 
initial equations to a form convenient for numerical realization. The methods may be divided into three groups 

in accordance with the ultimate form of the equations. 

The first group involves conversion of'the initial system to a nonlinear integral equation for the tempera- 
ture distribution, the first instance of this appearing to be [I]. The treatment was extended [2] to boundaries 
with specular reflection. During the numerical solution, the integral term is replaced by a certain quadrature, 
after which the process involves only nonlinear algebraic equations for the temperature (in [3, 4], the system 
was linearized to give a system linear in TI-T(x)). The nonlinear system may be solved either by simple 

iteration [I, 5-9] or by Newton's method [10-14]. 

The second group [15-20] includes methods in which the radiation-transport equation obtained by integra- 
tion (or else the equation for the derivative of the radiation flux [15, 16]) is substituted into the energy equation, 
which results in an integrodifferential equation of first or second order. This equation is solved numerically 
as follows. The temperature distribution (as initially specified or found by computation) is integrated numeri- 
cally to define the integral radiation flux, which converts the energy equation to differential fol~n. This is then 
solved [16, 18] by the Runge-Kutta method. Other finite-difference schemes have also been used [15, 17, 19]. 
The resulting temperature distribution is reused in the iteration scheme until the required accuracy is ob- 
tained. In [20], the lincarization of the integral term was performed in the expression for the derivative of the 
radiation flux; the subsequent procedure involved finite-difference methods applied to the energy equation, with 
solution of the resulting system of linear equations. 

The third group [21-25] consists of methods in which the initial transport and energy equations are em- 
ployed directly. In [21, 22], a solution for the gray case was obtained by replacing these equations by a system 
of 21p + 2 nonlinear differential first-order equations, which were then solved by quasilinearization. Another 
procedure was used in [23-25]. Initially, the temperature distribution was supplied, and the Runge-Kutta meth- 
od was used to solve the differential equations, with the transport equation solved by finite-difference methods 
in terms of the wavelength and angle. The result for the radiation flux was substituted into the energy equation, 
which itself was integrated by the Runge-Kutta method. The process was repeated until the required accuracy 
was obtained. 

These methods have been utilized in examining various phenomena in this area; although certain advances 
have been made, recent results show that very large amounts of machine time are required for detailed and 
full incorporation of factors such as selectivity in the medium and in the bounding surfaces, as well as the angle 
dependence of the reflection coefficient; this is so even if the results are of comparatively low accuracy. Here 
we give a new numerical method that allows one to incorporate these effects without excessive consumption of 
computer time. 
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Cons ide r  a p l a n a r  l a y e r  of  p a r t i a l l y  t r a n s p a r e n t  nonsca t te  r ing  mate  r ia l  bounded by opaque s p e e u l a r l y  r e -  
f lec t ing  s u r f a c e s .  The dens i ty  of the total  e n e r g y  flux and the t e m p e r a t u r e  of the hot boundary  a r e  known. We 
place the o r ig in  at  the c e n t e r  of the l a y e r  and se t  the X axis a long the flux d i r ec t i on .  Then the p rob lem amounts  
to solut ion of the t r a n s p o r t  equa t ion  

cosr (x) = - -  %I~ (x) ~ %n21 e ,~ (1) 

in conjunct ion  with the e n e r g y  equa t ion  

- :  (A/h) T'(x) 2r~ ~ (l~(x) cos r sin r dv d~ = Q. 
0 0  

The boundary  condi t ions  take the f o r m  

I ~  = (1 - -  Ra,v)  n2vIe, v -~- R i ,v1~,  

1;- = ( l  - ,% ~) , ,~ le , ,  + R.~, j , + ,  

T (--l)  - -  T v 

We in t roduce  the quant i t ies  

x = l ,  

(2) 

(3) 

(4) 

(5) 

q%,~=(l~- I~) jcos ~:; u r  (6) 

Note that  q~,v is the de ns i t y  of the s p e c t r a l  d i r ec t ion  flux, i .e . ,  the total  amoun t  of e n e r g y  t r a n s p o r t e d  per  
unit  t ime in unit f r e q u e n c y  range  in unit so l id  angle through unit a r e a  p e r p e n d i c u l a r  to the X axis  by rays  
p ropaga t ing  in the d i r e c t i o n s  (~, ~0) and ( -~ ,  ~0). 

The s y s t e m  of (1) and (2) takes  the fol lowing f o r m  in t e r m s  of the new v a r i a b l e s :  

q~..~ (x) = - -  %ur (x) + 2~n~. 1 e,~ (x), (7) 

u~.~ (x) - - -  v~q, , ,  (x), (8) 

(9) 

(10)  

(11)  

- -  (A/h) T' (x) + 2n.f.l q*,~ (x) dv d~ = Q. 
0 0  

We d i f f e ren t i a t e  (7) and subs t i tu te  the r e s u l t  into (8) to get  

q;;.~ (x) - v~ q, ,~ (*) = 2~,n~ 1e. ~ ( x )  

The boundary  condi t ions  of (3) and (4) become  

q'~.v(x)--%Px,, ,qr = 0; x = - -  l; 

q~.,, (x) + 7~ &,, q*,v (x) = O; x = 1. 

We now have the s y s t e m  of (9 )and  (10) t o g e t h e r  with (5) and (11); this fo rmula t ion  is not equivalent  to the 
+ 

ini t ia l  one,  s ince  we do not  have to ca lcu la te  the s p e c t r a l  in tens i t i es  I v and Iv in o r d e r  to d e t e r m i n e  the t e m -  
p e r a t u r e  d i s t r i bu t ion ,  s ince  we m e r e l y  have to de r ive  the l e s s - d e t a i l e d  quant i ty  qib, u. 

We e x p r e s s  the so lu t ion  to (10) sub jec t  to the boundary  condi t ions  of (11) in t e r m s  of the G r e e n ' s  function 
gu(x, ~) fo r  the c o r r e s p o n d i n g  h o m o g e n e o u s  c a s e :  

l 

q*,v (x) ---- 2% n~ j' g,~ (x, ~) I~ a, (~) d~, 
- '  (12) 

D o e-V~, (4+.-~) _ e-Vv t:r - -  l ~ x  < ~. g,~ (x.~) = [~.~ [RI,.~ e -v'~ ~2+~+~) + R~..~ e -vv (2-.-~) _ ..1.,, -.~,,~ 

(13) &, (x,~) = [J,, [R~,.~ e -v"~ (2+.+~) + R2,x e-V~' (~-'~-~) - -  R~,,~.R2,.~ e - v *  (4-.+~) _ e-V~ t.-~,]; ~ < x ~ 1. 

(14) 

We in t roduce  the d i m e n s i o n l e s s  quant i t ies  

0 = T / T  1, N = A/(~aT~h),  a = Q/(~aT]), 
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where 0, N, and a are the dimensionless temperature, dimensionless thermal conductivity, and dimensionless 

total energy flux density, which gives 

2~ i I' q,,~ (x) dv d~ = a, (15) - -  NO' (x) -~ ~crT 4 b b 

which is used with (12) and the boundary condition 0(-1) = I to define the temperature  distr ibution and the spec-  
tral  radiation fluxes in the sys tem.  

These steps have reduced the number  of independent parameters  by one (the half- thickness of the layer  
h has disappeared).  If the medium has selective optical cha rac te r i s t i c s  (selective case) ,  then the numerical  
representa t ion for a single value ~-v results  in l v independent parameters  (numbers). Since l v is fair ly large 
for  a reasonably precise  approximation, there is vir tually no advantage from this reduction in the number  of 
pa r ame te r s .  

The situation is different for a grey  medium (gray problem). Equations (12) and (15) (the la t ter  af ter  in- 
tegrat ion of qr with respec t  to frequency) show that the number  of pa ramete r s  is then reduced substantially; 
for  instance, for symmet r i ca l  boundaries we have instead of the seven parameters  (n, k, R, A, h, T1, Q), the 
four pa ramete r s  (T, R, N, a). 

Complete analysis  of the heat t ranspor t  in a planar gray  medium ceases  to be almost  hopeless when these 
dimensionless parameters are used; for instance, numerical realization of this method requires perhaps 1.5- 

2 h of B~SM computer run time to calculate a series of temperature distributions and radiation fluxes for cer- 

tain ranges in ~- and R for all possible sets of N and a (about I0 points in N and about I0 points in a). The re- 

sults from such calculations allow one to predict roughly what picture will be observed for a real nongray me- 

dium. This latter feature, rather than the desire to reduce the number of independent parameters, is the basis 
for using dimensionless quantities in selective problems. 

There ate various ways of introducing dimensionless parameters, and one of the basic requirements here 

is to provide the closest possible correspondence between the selective and gray cases. Of course, complete 

identity is not possible because in the selective case one cannot identify a parameter that corresponds ade- 

quately to the optical thickness 2~- in the gray case. The other quantities defined by (14) meet this requirement 

if we neglect the weak wavelength dependence of the refractive index. Most studies on such heat transport for 

gray media have N* = Ak/(n~-a~) as the analog of the parameter N, or some similar quantity. It will be clear 

from the above why such aquantity is not suitable for the selective case. If, on the other hand, we use aquan- 

tity related to the geometrical dimensions [15, 23, 26, 27] in producing the dimensionless parameters, then the 
meaning of N in the selective case will be the same as in the gray one. 

Another requirement imposed on the dimensionless quantities is that the dimensionless energy Eq. (15) 

should have the same form as the dimensional one. Of course, use of the half-thickness h as the divisor in 
producing the dimensionless  quantity causes the range in the independent variable x to be [-1,  1]. 

It is c lea r  that the nonlinearity ar ises  from T(x), so it would be ext remely  valuable in each iteratibn to 
use only functions of x, all operations with the var iables  v and p having been completed previously.  This can 
be done by uncoupling the variables  v and ~ in the express ion for the Planck function, which is expanded around 
some tempera ture  T o as a Taylor  se r i e s .  Fo rma l  integration of (15) then gives us a system of two nonlinear 
integral equations whose kernels are dependent on the Green 's  function: 

1 

O ( x ) =  1 - - ( a / N ) ( 1 . k - x ) + ~  1Ji (x ,  [)~O([)d~; i =  1, 2 . . . . .  m, (16) 
i - -1  

1 

O' (x) = - -  a/N + ~ i Gi(x, [) ~,0 ([) d[, (17) 
i - - t  

whe re 

s, (x, ~) = . ! S ~ . ~  ~,,~ (To) i~ (x,~) dv dr, (i 8) 
O0 

c, (x, ~) = j'.!' ~ n~ z21 ~. (To) g~ (x, ~1 dv d~, a 9) 
0 0  
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x 

j~ (x, ~) = j' g~ (~', ~) dg', (20 ) 
--1 

~ 0  = (4z~/Nt~oT~) [71 (0 - -  00)1 i- '  O'/(i - -  1)!, 00 = To~T1, (21) 

and I (i) is the derivat ive of o rder  i with respec t  to tempera ture  at T = T 0. e, y 

A very  important  feature is that in the case of symmet r i ca l  boundaries ,  R 1 = R2, the Green 's  function has 
the following s y m m e t r y  fea tures :  gv(x, ~) = g v ( - x , - ~ ) ,  gv(x, {) = gv(~, x); although the original Green 's  function 
is not symmet r i ca l ,  it is readily shown that the following expansion applies: 

iv (x, ~) = 7~ (x, ~) + ~ (~), ~h~ L (x,  ~) = - 7~ ( - - x ,  - ~). 

The s y m m e t r y  reduces the executive s tore required very  considerably and also near ly  halves the run t ime .  

The above procedure  for  deriving the equations for  the tempera ture  dis tr ibut ion is not specific to this 
formulat ion:  s i m i l a r  schemes  can be given for other  s imi l a r  problems,  in par t icu lar ,  nonstationary ones. 

Aspects  of the numerica l  realization and cer ta in  results  will be given in the second par t  of the paper.  

x o r ~  
r 
~ = [cos r 
I 
I +, I- 
T 
8 = T / T  1; 
Q 
a 

q$ ,v 
n 
n2 
k 
h 
7 = k h  
R 
A 
N 
y =rh*; ~= 
I I  [2r  (1 - 
R 1 1 ~ e - 4 ~ l ;  p = 
(1 + R) / ( I  - R); 

in 
l 

N O T A T I O N  

is the coordinate of a point in l ayer  (E[-1, 1]); 
is the angle reckoned f rom the positive di rect ion of the X axis; 
is the azimuth; 
is the radiation intensity; 
are the radiation intensit ies in the direct ions for which 0 -< @ < ~/2 and v/2 -< @ --< ~, respect ively;  
is the tempera ture ;  

i s  the 
is the 
is the 
is the 
is the 
is the 
is the 

energy flux density;  
d imensionless  total energy  flux density in (14); 
spec t ra l  direct ional  flux density; 
ref rac t ive  index; 
refract ive  index averaged ore r the spec t rum;  
absorption coefficient;  
half- thickness  of layer ;  

is the reflection coefficient;  
is the thermal  conductivity; 
is the dimensionless  thermal  conductivity in (14); 

is the number  of t e rms  in the expansion of I~,v(T) as a Taylor  se r ies ;  
is the number  of nodes in the quadratic formula.  

I n d i c e s  

e is the equil ibrium radiation in vacuum; 
v is the frequency; 

or~ is the angle; 
1, 2 are  the hot and cold boundaries,  respect ively;  
0 is the tempera ture  used in the Taylor  se r i e s .  
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A P R O B L E M  tN T H E R M A L - C O N D U C T I V I T Y  T H E O R Y  

N. N .  K u z n e t s o v a  UDC 536.24.02 

A solution of the problem of heat distribution in an infinite lamina is presented.  

Let  an infinite lamina of thickness 2 l ( - l  < x ~ l)  have an initial temperature  u 0. Over the course  of a 
time t 1 it is heated by a constant  thermal  flux of density q, as a result  of which the temperature  of the surfaces  
bounding the lamina becomes equal to u 1. It is required to determine by what taw the thermal flux m u s t  change 
fur ther  in o rder  that the lamina surfaces  be maintained at this temperature  u~. Initially, we find the t empera-  
ture distribution law at the end of heating, i.e., af ter  expiration of time t I. To do this we use the solution of the 
thermal-conduct iv i ty  equation 

Ou O~u 

Ot Ox ~ (1) 

with initial condition 

and boundary conditions 

u (x ,  O) = uo (2) 

Ou (x, i) (3) 
Ox Fx=-t 
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